SOME MATRIX TRANSFORMATIONS AND ALMOST CONVERGENCE

Neyaz Ahmad Sheikh, Ab. Hamid Ganie

Department of Mathematics, National Institute of Technology Srinagar - 190006.

Corresponding address: neyaznit@yahoo.co.in

Received 16 May, 2012; Revised 9 August, 2012

ABSTRACT
The sequence space $bv(u, p)$ has been defined and the classes $(bv(u, p): l_\infty)$, $(bv(u, p): c)$ and $(bv(u, p): c_0)$ of infinite matrices have been characterized by Başar, Altay and Mursaleen (see, [2]). The main purposes of the present paper is to characterize the classes$(bv(u, p): f_\alpha)$, $(bv(u, p): f)$ and$(bv(u, p): f_0)$, where f_α, f and f_0 denotes the spaces of almost bounded sequences, almost convergent sequences and almost convergent null sequences, respectively, with real or complex terms.

2010 AMS Mathematical Subject Classification: 46A45; 46B45; 40C05.

Keywords and Phrases: Sequence space of nonabsolute type, almost bounded sequences, β-duals and Matrix mappings.

1. INTRODUCTION, BACKGROUND AND PRELIMINARIES
A sequence space is defined to be a linear space with real or complex sequences. Throughout the paper \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let ℓ_∞, c and c_0 respectively be Banach spaces of bounded, convergent and null sequences $x = \{x_n\}_{n=0}^{\infty}$ normed by $\|x\| = \sup_{n \geq 0} |x(n)|$; also, by cs we denote the sequence of all convergent series.(see, [7]).

Let X and Y be two non-empty subsets of the space ω of real or complex sequences. Let $A = (a_{nk})(n,k \in \mathbb{N})$, be an infinite matrix of real or complex numbers. We write $(Ax)_n = A_n(x) = \sum_k a_{nk}x_k$. Then $Ax = \{A_n(x)\}$ is called the A-transform of x, whenever $A_n(x) = \sum_k a_{nk}x_k$ converges for each $n \in \mathbb{N}$. We write $\lim_n Ax = \lim_n A_n(x)$. If $x \in X$ implies $Ax \in Y$, we say that A defines a (matrix) transformation from X into Y and we denote it by $A: X \rightarrow Y$. By $(X: Y)$, we mean the class of all matrices A such that $A: X \rightarrow Y$.

Let D denote the shift operator on ω, that is, $Dx = \{x(n)\}_{n=1}^{\infty}$, $D^2x = \{x(n)\}_{n=2}^{\infty}$ and so on. Obviously, D is a bounded linear operator on l_∞ onto itself. A Banach limit L is a non-negative linear functional on l_∞ such that L is invariant under the shift operator that is, $L(Sx) = L(x)$ and that $L(e) = 1$, where $e = \{1,1,...\}$ (see, [1]). A sequence space is said to be almost convergent (see, [3]) to the generalized limit α if all Banach limits of x are α. We denote the set of almost convergent sequences by f. It was proved by Lorentz (see, [3]) that

\[
f = \{ x \in l_\infty : \lim_m \tau_{mn}(x) = \alpha , uniformly in n \},
\]

where, \[
\tau_{mn}(x) = \frac{1}{m+1} \sum_{j=0}^{m} x_{j+n} , \tau_{-1,n} = 0 \text{ and } \alpha = f-\lim x.
\]

Nanda [6] has defined a new set of sequences f_α, as follows:

\[
f_\alpha = \{ x \in l_\infty : \lim_m |\tau_{mn}(x)| < \infty \}.
\]
We call f_{∞} the set of all almost bounded sequences. We denote by X^β, the β-dual of a sequence space X and mean the set of all these sequences $x = (x_k)$ such that $xy = (x_k y_k) \in cs$ for all $y = (y_k) \in X$.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., ([2, 4, 5]). The sequence space $bv(u, p)$ has been defined and the various classes ($bv(u, p)$: l_{∞}) ($bv(u, p)$: c) and ($bv(u, p)$: c_0) have been characterized (see, [2]). In the present paper, we characterize the classes ($bv(u, p)$: f_{∞}), ($bv(u, p)$: f) and ($bv(u, p)$: f_0), where $u = (u_k)$ is a sequence such that $u_k \neq 0$ for all $k \in \mathbb{N}$.

The space $bv(u, p)$ is defined (see, [2]) as $bv(u, p) = \{ x = (x_k) \in \omega : \sum_k |u_k \Delta x_k|^p < \infty \}$, where, $\Delta x_k = x_k - \Delta x_{k-1}$.

2. MAIN RESULTS
Define the sequence $y = (y_k)$ which will be used as the A^u-transform of a sequence $x = (x_k)$, i.e.,

$$y_k = u_k \Delta x_k ; \ k \in \mathbb{N}. \tag{2.1}$$

For brevity in notation, we write $t_{mn} (x) = \frac{1}{m+1} \sum_{j=0}^{m} A_{n+j} (x) = \sum_k a(n, k, m) x_k$.

where, $a(n, k, m) = \frac{1}{m+1} \sum_{j=0}^{m} a_{n+j, k} ; \ (n, k, m \in \mathbb{N})$

Also, $\bar{a}(n, k, m) = \left[\frac{a(n, k, m)}{u_k} \right] ; (n, k, m \in \mathbb{N})$.

Now, we give the following lemmas which will be needed in proving the main Theorems.

Lemma 2.1 [2] Define the sets $D_1(p)$ and $D_2(p)$ as follows:

$D_1(p) = \left\{ a = (a_k) \in \omega : \sup_n \sum_k \left| \sum_{j=k}^{a_j} u_k \right|^p \right\}$

$D_2(p) = \bigcup_{B > 1} \left\{ a = (a_k) \in \omega : \sup_n \sum_k \left| \sum_{j=k}^{a_j} u_k ^{-1} B^{-1} \right|^p \right\}$

Then, $[bv(u, p)^\beta] = D_1(p) \cap cs ; \ (0 < p_k \leq 1)$ and $[bv(u, p)^\beta] = D_2(p) \cap cs ; \ (1 < p_k < \infty)$.

Lemma 2.2 [6] $f \subset f_{\infty}$.

We consider only the case $1 < p_k \leq M < \infty$ and the case $0 < p_k \leq 1$ may be proved in a similar fashion.

Theorem 2.3: (a) Let $1 < p_k \leq M < \infty$ for every $k \in \mathbb{N}$. Then $A \in (bv(u, p): f_{\infty})$ if and only if

$$\sup_{n, m} \sum_k |\bar{a}(n, k, m) B^{-1}|^{p^k} < \infty \tag{2.2}$$

and $\{a_{nk}\} \in D_2(p) \cap cs$. \tag{2.3}
(b) Let $0 < p_k \leq 1$ for every $k \in \mathbb{N}$. Then $A \in (bv(u,p); f_\infty)$ if and only if
\[\sup_{n,m} \sum_k |\bar{a}(n,k,m)|^p_k < \infty \]
and
\[\{a_{nk}\} \in D_1(p) \cap cs. \]

Proof: Sufficiency: Suppose the conditions hold and $x \in bv(u,p)$. Using the inequality which holds for any $C > 0$ and any two complex numbers a, b
\[|ab| \leq C(|a|^{q} + |b|^p), \]
where, $p > 1$ and $p^{-1} + q^{-1} = 1$ (see, [3]), we have
\[|t_{mn}(Ax)| = |\sum_k a(n,k,m)x_k| = |\sum_k \bar{a}(n,k,m)y_k| \leq \sum_k B \left[|\bar{a}(n,k,m)B^{-1}|^p_k + |y_k|^p_k \right] \]

Now, taking \(\sup \) over m, n on both sides to the above inequality, we get $Ax \in f_\infty$ for every $x \in bv(u,p)$, i.e., $A \in (bv(u,p); f_\infty)$.

Necessity: Suppose that $A \in (bv(u,p); f_\infty)$. Then Ax exists for every $x \in bv(u,p)$, and this implies that $\{a_{nk}\} \in [bv(u,p)]^\beta$ for every $n \in \mathbb{N}$, the necessity of (2.3) is immediate.

Now, $\sum_k a(n,k,m)x_k$ exists for each m, n and $x \in bv(u,p)$, the sequences $\{a(n,k,m)\}_{k \in \mathbb{N}}$ define the continuous linear functionals $\varphi_{mn}(x)$ on $bv(u,p)$ by $\varphi_{mn}(x) = \sum_k a(n,k,m)x_k$; $n, k, m \in \mathbb{N}$. Since $bv(u,p)$ is complete and $\sup_{m,n}|\sum_k \bar{a}(n,k,m)x_k| < \infty$, so by uniform bounded principle, there exists $M > 0$ such that
\[\sup_{m,n} |\varphi_{mn}(x)| = \sup_{m,n} |\sum_k a(n,k,m)x_k| = \sup_{m,n} |\sum_k \bar{a}(n,k,m)x_k| \leq M < \infty. \]

This implies that $\sup_{m,n} |\sum_k \bar{a}(n,k,m)x_k|^p_k < \infty$, which shows the necessity of the condition (2.2) and the proof of (i) is complete.

Theorem 2.4: (a) Let $1 < p_k \leq M < \infty$ for every $k \in \mathbb{N}$. Then $A \in (bv(u,p); f_\infty)$ if and only if
(i) the condition (2.2)-(2.5) of Theorem 2.3 holds
(ii) there is a sequence (β_k) of scalars such that
\[\lim_m \bar{a}(n,k,m) = \beta_k, \quad \text{uniformly in } n. \]

Proof: Sufficiency: Suppose that the conditions (2.2)-(2.6) hold and $x \in bv(u,p)$. Then Ax exists and we have by (2.6) that $|\bar{a}(n,k,m)B^{-1}|^p_k \to |\beta_k B^{-1}|^p_k$ as $m \to \infty$ uniformly in n for each $k \in \mathbb{N}$, which leads us with (2.2) that
\[\sum_{j=0}^{k} |\beta_j B^{-1}|^p_k = \sum_{j=0}^{k} |\bar{a}(n,j,m)B^{-1}|^p_k \leq \sup_{m,n} \sum_j |\bar{a}(n,j,m)B^{-1}|^p_k < \infty, \]
holding for every $k \in \mathbb{N}$. Consequently reasoning as in the proof of the sufficiency of Theorem 2.3, the series $\sum_k a(n,k,m)x_k$ and $\sum_k \beta_kx_k$ converges for every n, m and for every $x \in bv(u,p)$. Now, for given $\epsilon > 0$ and $x \in bv(u,p)$, choose a fixed $k_0 \in \mathbb{N}$ such that
\[\left[\sum_{k=k_0+1}^{\infty}|x_k|^p\right]^{\frac{1}{p}} < \varepsilon, \text{ where } H = \sup_{k} p_k. \] Then, there is some \(m_0 \in \mathbb{N}\), by condition (ii) such that \[\left|\sum_{k=1}^{k_0} [a(n,k,m) - \beta_k]\right| < \varepsilon, \text{ for every } m \geq m_0 \text{ and uniformly in } n. \]

Now, since \(\sum_k a(n,k,m)x_k\) and \(\sum_k \beta_k x_k\) converges (absolutely) uniformly in \(n,m\) and for \(x \in bv(u,p)\), we have that \(\sum_{k=0}^{k_0}[a(n,k,m) - \beta_k]x_k < \frac{\varepsilon}{2}\), converges uniformly in \(n,m\) and \(x \in bv(u,p)\). Hence by conditions (i) and (ii) we have \(\sum_{k=0}^{\infty}[a(n,k,m) - \beta_k] \rightarrow 0\) (for all \(m \geq m_0\)) uniformly in \(n\). Therefore, \(\sum_{k=0}^{\infty}[a(n,k,m) - \beta_k] \rightarrow 0\) uniformly in \(i.e.,\)

\[
\lim_m \sum_k a(n,k,m)x_k = \sum_k \beta_k x_k \text{ uniformly in } n.
\]

Hence, \(Ax \in f\), which proves sufficiency.

Necessity: Suppose that \(A \in (bv(u,p):f)\). Then, since \(f \subset f_\infty\) (by Lemma 2.1), the necessities of condition (i) is immediately obtained from Theorem 2.1. To prove the necessity of (ii) \(i.e.,(2.6)\), consider the sequence \(e_k = (0,0,...,1^{k\text{th place}},0,0,...) \in bv(u,p)\), condition (ii) follows immediately by (2.7) and the proof is complete.

Collary 2.5: \(A \in (bv(u,p):f_0)\) if and only if condition (i) and (ii) of above Theorem holds along with \(\beta_k = 0\) for each \(k \in \mathbb{N}\).

Proof: The proof follows from theorem 2.4 by taking \(\beta_k = 0\) for each \(k \in \mathbb{N}\).

REFERENCES

